Combined Clustering Methods for Microarray Data Analysis
نویسندگان
چکیده
منابع مشابه
a comprehensive comparison of different clustering methods for reliability analysis of microarray data
in this study, we considered some competitive learning methods which include hard competitive learning (hcl) and soft competitive learning (scl) with/ without fixed network dimensionality for reliability analysis in microarrays. in order to have a more extensive view, and keeping in mind that competitive learning methods aim at error minimization or entropy maximization (different kinds of func...
متن کاملClustering methods for the analysis of DNA microarray data
It is now possible to simultaneously measure the expression of thousands of genes during cellular di erentiation and response, through the use of DNA microarrays. A major statistical task is to understand the structure in the data that arise from this technology. In this paper we review various methods of clustering, and illustrate how they can be used to arrange both the genes and cell lines f...
متن کاملCombined Gene Selection Methods for Microarray Data Analysis
In recent years, the rapid development of DNA Microarray technology has made it possible for scientists to monitor the expression level of thousands of genes in a single experiment. As a new technology, Microarray data presents some fresh challenges to scientists since Microarray data contains a large number of genes (around tens thousands) with a small number of samples (around hundreds). Both...
متن کاملData Mining Methods for Microarray Data Analysis
The advent of gene expression microarray technology enables the simultaneous measurement of expression levels for thousands or tens of thousands of genes in a single experiment (Schena, et al., 1995). Analysis of gene expression microarray data presents unprecedented opportunities and challenges for data mining in areas such as gene clustering (Eisen, et al., 1998; Tamayo, et al., 1999), sample...
متن کاملClustering Techniques Analysis for Microarray Data
Microarray data is gene expression data which consists of the protein level of various genes for some samples. It is a high dimensional data. High dimensionality is a curse for the analysis of gene expression data. Thus gene selection process is used in which most informative genes are selected from the pool of gene expression data set. All the genes are not relevant in each case. First we need...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Engineering Forum
سال: 2013
ISSN: 2234-991X
DOI: 10.4028/www.scientific.net/aef.8-9.508